arc的英文是弧的意思,加在sin、cos、tan、cot之前就表示求这些三角函数值对应的弧度值(角度值)。sin与arcsin互为反函权数,cos与arccos互为反函数,tan与arctan互为反函数,cot与arccot互为反函数。
数学里arc是反三角函数的符号,适用于表达不特殊的角的大小。特殊角如30°的tan值,sin值和cos值都是一个特殊的数,但是在解决一些题的时候会出现某一个角的三角函数值不特殊,但是又没有反三角函数表,所以不清楚这个角的大小,arc的作用就是表示这种不特殊的角,其中涉及增减性的问题。
反三角函数是一种基本初等函数。它并不能狭义的理解为三角函数的反函数,是个多值函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x这些函数的统称,各自表示其正弦、余弦、正切、余切为x的角。
三角函数的反函数不是单值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数。
为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2 < y < π/2;反余切函数y=arccot x的主值限在0 < y < π。